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AN ARBITRARY BODY NEAR A PLANE WALL
WITH A HOLE

E. GAvzE
Department of Atmospheric Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

(Received 4 December 1987; in revised form 5 January 1990)

Abstract—A boundary integral equation technique is presented for solving the low Reynolds number
hydrodynamic interaction of a rigid body with a plane wall and a hole. Such a problem occurs during
the process of filtration by a multipore or similar devices. The proposed technique utilizes the Green
function of the Stokes equation for the infinite plane wall to eliminate all unknowns on the plane wall.
A system of two integral equations is derived, for the stresses on the surface of the body and for the velocity
in the hole; this system is later reduced to a single equation. The proposed technique is applicable to a
hole and a body of arbitrary shape and no symmetry is required.
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1. INTRODUCTION

The motion of a particle in the vicinity of a pore is of interest in investigating filtration and sampling
of aerosols by a multipore. A particle moving near a wall is subjected to additional force and
torque, known altogether as the “wall effect”. These forces are due to the stresses formed on the
wall. The presence of a hole in the wall adds to the complexity of the problem, in that the symmetry
is distorted and the particle experiences a different force as its distance from the hole and direction
of motion change.

Dagan et al. (1982a) have shown that, in the absence of additional boundaries, the flow through
a circular orifice is little affected by its thickness. In most papers treating this problem, zero wall
thickness has been assumed. Davis et al. (1981) solved the axisymmetric problem of a point force
approaching a circular hole along its symmetry axis by solving a dual integral equation on the wall,
with an additional correction velocity term in the hole. Davis (1983) obtained results for the same
problem, correct to the third order of the sphere’s radius. His results agree well with later results
for a sphere-to-hole radii ratio up to about 1. Dagan et al. (1982b) solved the same problem, but
for a sphere of finite size, by constructing two different axisymmetric solutions, of Fourier—Bessel
type, for both sides of the wall and matching them by requiring the continuity of the velocity and
the normal components of the stress tensor across the hole. Their solution is given as truncated
infinite series whose coefficients are determined by the satisfaction of the boundary conditions on
a finite number of points on the sphere’s surface (Ganatos et al. 1980). Miyazaki & Hasimoto (1984)
obtained a closed-form solution for a point force of arbitrary position and direction of motion in
the vicinity of a circular hole. Recently, Yan et al. (1987) applied a combined infinite series—integral
equation method for the arbitrary motion of a finite sphere near a circular hole. In their solution,
the velocity is given as a sum of the single-layer potential with the stress on the wall and an infinite
series of spherical harmonics. The satisfaction of the boundary conditions and the truncation of
the series and the infinite wall lead to a finite set of linear equations. All the above-mentioned
solutions apply to cases in which a certain symmetry is required from the body. Dagan et al. (1983)
calculated the trajectories of neutrally buoyant and inertialess spheres which approach a circular
hole in low Reynolds numbers. They used an order of magnitude analysis to estimate the
hydrodynamic interaction of the spheres with the boundaries. They compared their calculations
to experimental results and found good agreement. In a later paper, Wang et al. (1986) studied
the same problem but without neglecting the particles’ inertia, with improved estimates of the
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hydrodynamic interaction and with molecular attraction of the wall. These last two papers
demonstrated the importance of the hydrodynamic interaction which, eventually, caused all the
particles to enter the hole (in the absence of molecular forces). Dagan er al. (1988) dealt with the
axisymmetric motion of a gas bubble at the exit of a circular orifice in the presence of a stagnant
cap of insoluble surfactants. The unknown stresses and velocities on the surface of the drop were
approximated by piecewise quadratic functions. The use of the multipole-series technique, as in Yan
et al. (1987), required a great number of terms, due to the discontinuity of the velocity on the
surface of the drop, and proved to be inefficient.

On studying the problem we decided to develop a method for which no symmetry is required
and for which the domain of integration does not have to be truncated. In formulating the problem,
in the general non-symmetric case, as a boundary integral equation, two approaches may be taken.
One may, as in Yan er al. (1987), represent the solution directly as a single-layer potential on the
infinite wall and on the body’s surface (see Ladyzhenskaya 1963) (the double-layer potential on
the body’s surface vanishes identically for rigid-body motions) and solve the equations for the stress
on both surfaces. This approach has the advantage that the body can cross the hole’s plane, but
the disadvantage that the infinite wall has to be truncated. This may become an acute problem when
different positions of the body, relative to the wall, are considered so that different truncations have
to be made each time. Another approach, the Green function approach, taken by us, is to represent
the solution with the aid of the Green function for the infinite plane wall. In this representation,
both single- and double-layer potentials vanish on the wall and one is left with the single-layer
potential on the body’s surface and the double-layer potential, with the unknown fluid velocity,
on the hole’s plane. Two different solutions are constructed for the half space z >0 and z <0
(figure 1), and equations are obtained by requiring the continuity of the velocity and the normal
components of the stress tensor. The body can now be placed as far from the hole as necessary
without having to modify the domain of integration. The main disadvantage of this proposed
technique is that the body can not intersect the plane of the hole but, as we show, good accuracy
is achieved even with a distance/radius ratio of 1.1, so that practically there are no limitations in
calculating the trajectories of particles approaching the hole.

In this paper we present results for spheres and for elongated ellipsoids. The results for spheres
are in good agreement with previous results except for the transverse components of the force near
the hole, for which our results are up to one order of magnitude higher than the results of Yan
et al. (1987); this demonstrates the importance of the hydrodynamic interaction with the
boundaries. The results for the ellipsoids are, to the best of our knowledge, the first to be reported
in the literature.

2. DERIVATION OF THE BOUNDARY INTEGRAL EQUATIONS

Assuming the Reynolds number with respect to the body and the hole is small, Re < 1, the flow,
generated by the body’s motion is considered a Stokes flow. We adopt the quasi-stationary
assumption, according to which the flow is considered steady at every moment and the velocity
of the body is taken to be the boundary conditions for the flow at the body’s surface X,. Using
the reciprocal theorem for Stokes flow it may be shown that, knowing the stresses on %, arising
from the six independent translations and rotations of the rigid body, the force and the torque on
the body can be calculated for any Stokes flow in the same geometry.

‘Q'l z,
2>0

wall wall
;.Z F
T4 2 3,
Q,
<0

Figure 1. The geometry of the problem.
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The governing equation is therefore the Stokes equation, written for viscosity x = 1:

ap ov,
Vilg, = V1, Vilg,=0; (1]

where V; is the velocity of the fluid and ¥? is the velocity of the body. The fundamental solution

of Stokes equation is
U,(x,y) = 1 I: 0y +(x1_}’1)(xj—}’j)]

|x — y| [x —y|?
.Vz
- 2

X and Y are two field points and |x — y| is the Euclidean distance between them. (U, g) satisfy
[1] with respect to Y and (U, —q) with respect to X. The stress tensor for the flow (V, p) is

o, o,
9y(V.p) = o, " ox

U;(x, y) is the kernel of the single-layer potential. The kernel of the double-layer potential is the
stress tensor of the fundamental solution (U, g):

3 Yx;— ¥, -
U i), =g LTI, &

—5,p. 3]

The solution of [1] can now be written as:

Vk(x)=L Uni(x, y)ay(V, p)n;dy + L Ui(x: yMi(y) dy — L us Vi(»)oy(Us, qe)ymdy;  [5]
1 3 1 3
n; is the outward pointing unit normal vector and f; is the stress difference across the wall X,. The
last term on the r.h.s. of [5] vanishes on Z,, because V; is zero there, and vanishes on I, since on
X,, V=V'is a rigid-body motion. One may solve [5] directly [such is the starting point in Yan
et al. (1987)], but this requires the truncation of the integral on the infinite domain Z;. We now
describe the Green function method.

The Green function of the Stokes equation for the infinite plane X; =0 in the half space X; >0
(Blake 1971) consists of the velocity field G,

Gulx, y) = —2— ( 2 TR ’)+ Ghlx, y), [6]
and the pressure field g,
_ IR
8%, y) = a3+ 8% »), 7
where
Rk =Ve— xlln
Xp =X fork=1,2,
X3=—X;
and
=ly—x'|.
The velocity tensor G is
Gllzi(x9 }’) = (6k¢ 5&] - 5k353j)aﬁ(x’ y), a= 1, 23 [8]
and
x; 0 (x3R;, 65 RR
Gjl(xay)__aéi(#_f_ R33>' [9]
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The pressure vector g' is

gllc(x9 )’) = (5ka6aj - 5k3 6}3)g_j(x9 y)
and

- x3 0 (R
g0 - 35 (3) (10}

The sum U, + G, is the flow field generated by a unit force in the half space X;> 0 in the
presence of a wall at X;=0. It can be verified that

(Ui + Gy) = (Ui + Gu) =0. (1]

x3=0
>0

y3=0
x3>0

Therefore, the velocity in the half space z, > 0, generated by the motion of a body above the hole
plane (x; > 0) is given by the expression

Vi) = j [Uiiz, x) + Gz, x)]@:(x) dx
P2

—m j Viy)os U+ Gy, g+ g0),dy = Wi(2) + Wi (2), [12]
I
@, is the stress on X, ny;= —1 on X, and ¥, is the unknown velocity on X,. From [4] it follows
that on Z,,

3 23z =y (@ —yi)
Eik(z,y)Eo-B(Uk,qk):Z; i £

[13]

|z —x|°
A lengthy calculation shows that also, for (G, g),
0-13(Gka gk)y= Eik(z’ y) [14]
Thus,
Wi(z)=2 j Ey(z, y)Vi(y) dy. [15]
Ly

Due to the theorem on the discontinuity of the double-layer potential (see Ladyzhenskaya 1963),
we have:

. _ V(@) zeX,
lim W (2) = {0 ey [16]
23>0
and due to [11],
lim W, (z) =0. 17

230

For the half space Z, <0, we define the velocity as

Vil(z)= ~2J Eu(z, y)Vi(y)dy [18]
I
and again
. _ _ Vk(Z) zZe Zz
lim Vi (2) = {0 zes,. [19]
z3<0

The velocity V is now defined as

Vi(z) z>0

Vilz) = {V,: ) z<0. [20]
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Defined in such a way, in terms of the unknown velocity in the hole, the vanishing of the
velocity on the wall £, and the continuity in the hole X, are automatically fulfilled. Likewise,
the pressure can be defined in terms of the single-layer potential for the pressure, the Green
function for the pressure and the stress on X, and twice the double-layer potential for the pressure
and the unknown velocity on £,. For z > 0, the pressure P+ is given as the sum P* = P'+ P?,
where:

P = 0+ 8GOl 21
Z,
and
2 0g;
Piz)=4| == Vi(y)ndy. [22]
x, 0Y;
P'(z) vanishes for z;=0; on X, n;= 6, and y; = 0. Defining
1 3 z3(yi—2;)
- 23
Ni(z:y) 275('2—y!3+3 |z__y|5 ’ [ ]
[22] can now be written as
P2(2)=2L Ni(z, y)Vi(y) dy. [24]
2
Similarly, for z <0
P (z)= —ZL Ni(z, y)Vi(y)dy. [25]
2

The two unknowns are the stress @; on X, and the velocity V; on the hole X,. The first integral
equation is obtained by requiring the fulfillment of the boundary conditions on X, i.e. by letting
the field point Z in [12] approach the surface X, we require:

L [Uu(z, x) + Gui(z, x)]pi(x) dx + 2 L Eizy)Vi(y)dy=Vi, ZeX,. [26]

The second equation is obtained by requiring the continuity of the normal components of the stress
tensor of the flows (V*, P*) and (V -, P7) in the hole, i.e.

lim o(V*, P*) = lim 0 (=, P°). 27
4 Bd Z3
23>0 z3<0

In the appendix we prove that the continuity of the velocity components in the hole ([16]
and [19]) and the above requirements [27] are sufficient conditions for the unique determination
of the solution in both sides of the wall-hole plane. The limiting process [27] is not straightforward
since the kernel N;(z, y) in [24] and [25] and the space derivatives of E,(z, y) in [15] and [18]
have singularity 1/|z — y|*, which is not integrable on the hole plane. However, this difficulty
can be overcome by performing integration by parts, if only V; is smooth enough. This is
described in the next section. By separating the flow (V' *, P*) according to [12], [21] and [22], we
obtain:

f Eg(x,z)(pj(x)dx = —J
%

. Dy(1/1z =y )V;(»)dy, zeX,; [28]
2

where

(32 az az 52 )
Dy=(—m—8y5— -9,
¥ <az,. 0z, % 0z3 % 0z, 0z, O 0z, 623)' 9]

Equations [26] and [28] form the system to be solved.
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3. DISCRETIZATION OF THE EQUATIONS

Equation [28] cannot be discretized directly due to its strong singularity, however, since 1/|z - v |
is a harmonic function we have

g (e ey
6z3 |z —y| \0z} 0z})lz—yl|’

It then follows that:

0% . ¢? 0? 02 02
D, =2—4+—; Dy = — —; = = e
" oz} + oz3 27 522 +2 0z3 D2 =Dy 0z, 0z,

oz} 0z}

D; is a symmetric operator.

The analytical solution for the field generated by a point force, located above a circular hole
(Davis et al. 1981), shows that both the vertical and horizontal components of the fluid velocity
in the hole vanish on the edge of the hole. We divide the hole into triangles and an approximation
for the velocity is sought in terms of linear base functions that vanish on the edge, see figure 2.
For each triangle vertex, which is not on the edge, a linear function A(y) is defined such that it
equals 1 on this vertex and zero on all the other. Such functions are continuous throughout the
hole, vanish on the edge and have piecewise continuous first-order derivatives. In order to reduce
the singularity of [28], the Galerkin method is used with the same base functions. Two integrations
by parts are performed, the singularity is reduced to 1/{z — y | and the symmetry of D; is preserved.
This integrable singularity is eliminated by transforming the double surface integral to a double
path integral. The matrix form of the r.h.s. of [28], D, consists of submatrices M(k, [);, of order
3 x 3, representing the interaction between the kth and the /th vertices and having the following
form:

7
D33=2< +——>; D=0 fori#3 D=0 forj#3.

~ 1
M, (k, 1)=EZZ(2AZA5.+B"MBL)IM, (30a]

~ 1
My (k, 1)=EZZ(A£A£+2BZBL)IW [30b}

Figure 2. An element in the hole, corresponding to the  Figure 3. An element on the surface of the body, composed
node 0. of several triangles.
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Pt o2 l
Mk, 1) = My (k, 1)=ﬂ ZZA:.BLI»-. [30¢]
and
Hinl, =L T (4544 + BB (30d]

The summation is taken over all triangles m containing the vertex k, and all triangles » containing
the vertex /;

Imsj (2 =yl dzydyy+ |z —y| dzydy). B31]
Ly JLa

The integration is performed over the circumference of the mth and nth triangles. A%, BX and C¥,
are the coefficients defining the kth base function on the mth triangle:

hy)= Ay + By y, + Ch.

The surface of the body is divided into elements, each of which consists of several flat triangles
which have their vertices on the actual surface of the body, see figure 3. The elements are therefore
not planar. The base functions are taken to be constant on each element. Though, perhaps, not
the best approximation for a sphere, this method is easily applied to non-regular geometries,
especially if the surface of a body is given in terms of a finite number of points. The surface of
the sphere was divided into 396 triangles, comprising 108 elements.

Numerical calculations for this approximated sphere in an unbounded fluid yielded an error or
1.5% for the forces and 4.5% for the torques. In the following, we shall compare numerical results
with the above computed results for the approximated surface. The Galerkin method is used in
[26] with the constant base functions. After integration, [26] and [28] assume the following form:

0+6)o+2-E-v=V°
Ep+D-v=0.

U+ G and D are symmetric and positive definite matrices. D is well-conditioned, having a
condition number of about 10. D depends, of course, on the arrangement of the elements
composing the hole. Due to its well-conditioning, matrix D is easily inverted and system [32] is
reduced to a single equation:

(32]

[O+G—-2-E-D-'E7-9 =" , [33]

This matrix is symmetric and positive definite, its dimension is N x 3, N being the number of
elements on the surface of the body. Equation [33] with T only corresponds to the case of a particle
in an unbounded fluid, and with  and G to the case of an infinite plane wall. The term £ - D! - £
decreases fast as the particle moves away from the hole.

4. RESULTS

Computations were performed for a circular hole of radius R = 1, for approximated spherical
bodies of radii R =0.1, 0.5, 1 and 5, and for an approximated ellipsoid of axes A =B = 0.5 and
C=1,and A =B =0.25 and C = 0.5. In the following, results will be presented for the translation,
coupling and rotation tensors K, C and T. K and T are symmetric and negative definite. K; is the
ith component of the force acting on a body moving in the jth direction with unit velocity. T,is
the torque due to unit angular velocity. C; is the jth component of the force due to rotation in
the ith direction and the ith component of the torque due to translation in the jth direction; it
is, in general, not symmetric.

In table 1 we show a comparison of results of computations with different sets of elements which
compose the hole. For all six points of calculation the value of —K,, is a monotonic decreasing
function of the number of elements. Since the differences between cases ¢ and d were not large,
we decided to perform all the calculations with the set c, i.e. with 192 elements. For the
approximation of the surface of the particles, spheres and ellipsoids, we used 108 elements
composed of 396 triangles. The accuracy of the calculations depends, among other things, on the
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Table 1. Convergence of —X,,/|KZ|; sphere R =0.5, Z/R = 1.1

X
No. of
elements® 0 0.2 04 0.6 0.8 1
(a) 1.4841 1.5195  1.6623  2.0553  3.4202 6.9929
(b) 1.4741 1.5703 1.6400 1.9892  3.0329 6.2325
(c) 1.4724  1.5055 1.6365 1.9750  3.0027 6.2264
(d) 14702  1.5055 1.6359 19744  2.9989 6.1987

“Number of elements in hole: (a)—96, (b)— 128, (c)—192, (d)—224.

size and distance of the elements in the hole relative to the size of the particle. Therefore, because
of the high singularity of the operator E as the body approaches the hole, some of the singular
terms are calculated via a semi-analytic method. Different calculation times were therefore needed
for different locations and orientations of the particles. Calculations were performed on a CDC
computer Cyber 180/855. The time needed for the calculation of the three resistance tensors K, C
and T for the sphere was 150-170 CPU s. In table 2, a comparison is made for the axisymmetric
case (a sphere is located along the hole’s symmetry axis and moves vertically) with previous results.
The numerical values are the ratio — K,,/| K% |, K2 is the value for an unbounded fluid. We have
used for the “approximated” body the value K2 = —18.576 - R, calculated by our method, which
differs from the perfect sphere value of 67R by 1.5%. Results are given for different sphere radii
R and for different Z /R ratios, Z being the distance of the sphere’s center from the plane. The values
for R =0.5 are shown in figure 4 and for R =0.1 in figure 5. Calculations for R =0.1 were
performed with small elements near the center of the hole, whereas in the other cases the areas
of the elements were more or less equal. This explains the better results obtained in this case. In
table 3, results are given for —K,,/|KZ|, for R =0.5 and for the center of the body located at
distances X from the hole’s symmetry axis. Comparison is made with the results of Yan et al. (1987);
however, since their results are given on a graph, the values could not be discerned accurately. The
right-hand column shows the ratio for the wall effect X7, with no hole, as calculated from [33] when
the matrix 2+ E - D' E* is omitted. These results are compared with the analytical results of
Happel & Brenner (1973). For Z/R = 1.1 the difference between our results and Yan ez al. (1987)
is 5.5%, and the difference between our results and the theoretical results in the absence of the wall
is 4.4%. These results are presented in figure 6. The rise in the force occurs mainly near the edge
in the range 0.8 <x < 1.2,

In table 4 we present results for K,./|KZ|. Since all the terms are positive, a particle which
moves parallel to the wall towards the center of the hole experiences a force directed towards the
wall. If it moves towards the hole plane it experiences a force directed towards the center of the
hole. Our results are up to one order of magnitude higher than the results of Yan et al. (1987).
Results of the same order of magnitude were obtained for ellipsoids. The difference in results may
stem from the small number of spherical harmonics, only four, used by Yan et al. to satisfy the

Table 2. Axisymmetric case —K,./| K% |; sphere.
R

Z/R Ref.* 0.1 0.5 1 5

10 (a) 1.0738  1.1229  1,1240  1.1242
(b) 1.0596  1.1240  1.1262  1.1262
©) 1.0723 11246 1.1259  1.1261

5 (a) 1.0679  1.2590 12768  1.2800
(b) 1.0532  1.2509 12795  1.2850
(c) 1.0666  1.2618  1.2804  1.2837
2 (a) 1.0553  1.4866  1.8710  2.0952
(b) 1.0505 13919 1.8058  2.1200
©) 1.0540 1.4264 18654 2.1194
1.5 (a) 1.0554  1.4938 21715  3.1059
(b) 1.0504 13882  2.0334  3.1535
() 1.0523 14205 21042  3.1530
1.1 (a) 1.0558 14724 24893  8.3893
b) 1.0503  1.3777 22867  8.9400
(©) 1.0513  1.3946 23600  8.4700

2(a) Present work; (b) Dagan et al. (1982b); (c) Yan et al. (1987).
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SPHERE - R=0.5 SPHERE - R=0.1

1.075

Figure 4. The axisymmetric case. (a) Present work; Figure 5. The axisymmetric case. (a) Present work;

(b) Dagan et al. (1982b); (c) Yan et al. (1987). (b) Dagan et al. (1982b); (c) Yan et al. (1987).
S - R=0.5
SPHERE - R=0.5 PHERE
g 0.8
10 =38 071 % Z/R=1.1
* b 0.6 -0 Z/R=1.25
] I 054 o 7/R=1.5
Kzz 81 - Kxzod4t 4.2/Rc2 /.
5 PR 9 0.3
‘ a - 0.2
Z‘ L . R + 0.1 4
CooutiSEEE R R i
1 oz o4 o5 08 1 12 14 15 18 2 e ve os o 12 14
DISTANCE FROM CENTER DISTANCE FROM CENTER
Figure 6. —K,, vs the distance from the center. Figure 7. The transverse force, K,,/|KZ|.

@Z/R=11,b)Z/R=125()Z/R=15;(d)Z/R =2.

Table 3. —K,,/|K3|; sphere R =0.5.

X
Z/R Ref® 0 0.5 0.75 1 2 ©
10 (a) 1.123 1.123 . 1123 1.123 1.123 1.124
(b) 1.125 1.100  1.100  1.100 1.100 1.126
4 (a) 1.322 1.329 1336 1344 1.367 1.373
®) 1.30 1.300 1.300 1.300 — 1.380
2 (a) 1.487 1.585 1.705 1.848 2.089 2.099
(b) 1.426 1450 1.550 1.650 2.126

L5 (a) 1.494 1.682 1985 2449 3.125 3.139

(b) 1.421 1.600 - 1.900 2.500 — 3.205
L.l (a) 1.472 1.766 2.606 6226 10921 10.928
(b) 1.3946 1700  2.600 — — 11.459

Z—distance from the wall plane, X—distance from the hole center.
*(a) Present work; (b) Yan er al. (1987), right-hand column—analytical.

Table 4. Transverse force K,,/|KZ |; sphere R =0.5

X
Z(R Ref.* 0 0.2 04 0.6 0.8 1 1.2 1.4
2 (a) 0 0.0314 00606 0.0838 0.0951 0.0904 0.0722  0.0497
(b) 0 0.0150  0.0200 0.0300 0.0350 0.0300 0.0200 0.0200
L5 (a) 0 0.0524  0.1082 0.1661  0.2115 0.2118 0.1569 0.0899
() 0 0.0300  0.0500 0.0600 0.0600 0.0500 0.0400 0.0300
1.25 (a) 0 00632 0.1384 0.2365 0.3535 0.4000 02781 0.1306
() — — — — — — — -
1.1 (a) 0 0.0679 0.1562 02940 0.5446 0.7823  0.4807 0.1732
(b) 0 0.0400 00700 0.0800 0.0800 0.0600 0.0500 0.0400

®(a) Present work; (b) Yan et al. (1987).
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Ellipsoid - C=0.5, A=0.25;

SPHERE - A=0.1 horizontal orientation
0.9 T .
084 % Z/R=1.1 /X\ [
071 o 7/R=1.25 I\ RS Y *
08T e 2/R=1.5 /,'f \\\ 0. I/A=1.25 /
0.5+ | \ 5 ) /
oz |- 2/Re2 . ap | e 1A=L
[ 01 -+ Z/A=2 /
0.3 [ x \\ / — i
0.2 < /// \ \ ){
0 - _ K = +ee
0 02 04 05 08 1 12 L4

0 025 05 075 t 1% 15 175 2
DISTANCE FROM CENTER DISTANCE FROM CENTER

Figure 8. The transverse force, K,,/| KZ|. Figure 9. —K_./|KZ|; ellipsoid @ ==r/2.

boundary conditions on the surface of the sphere. Such a small number, which is enough for the
other terms, may prove to be insufficient for the transverse components. This component of the
force is important for the collection efficiency of the hole. A particle which moves towards the hole
in a quiet fluid will experience a considerable additional force directed towards the wall. If, on the
other hand, the particle is immersed in a flow and lags after it due to its inertia, this additional
force will be directed away from the wall, thus decreasing the collection efficiency. This
phenomenon was reported by Dagan er al. (1983). The results for spheres of radii R =0.1 and
R = 0.5 are shown in figures 7 and 8. The domain of significance for R = 0.1 is much narrower
than for R =0.5. Large differences also occur in the values for C,,; given in table 5.

We now present results for elongated ellipsoids. Let @ be the angle which the symmetry axis
of the ellipsoid forms with the X; axis when rotated about the X, axis. The values of the resistance
tensors, calculated by our numerical method for an unbounded fluid and an ellipsoid with axes
C=1and A=0.5are KZ= —11.182 and K% = —12.775 for @ = 0. For ® = = /2 these values are
interchanged. The analytical values are K% = —11.347 and K3, = —12.996, a difference of 1.7%.
Our value for the rotation term T, = —8.9312 is 5.5% smaller than the analytical value (Happel
& Brenner 1973). In table 6 numerical tests are shown, with different sets of elements in the hole,
for ellipsoids of axes C=1and A =0.5, ® =0 and n/2. As in table 1, the values decrease as the
number of elements increases. Again we decided to use the same set of 192 elements as before. The

Table 5. Coupled force C,,/|KZ| - R; sphere R =0.5

(b) - = == = = =
1.1 (a) 0.029 0.065 0.126 0.256 0.438 0.238  0.076

b) 0 0.005 0.015 0.040 0.080 0.120 — —
2(a) Present work; (b) Yan er al. (1987).

X
Z/R  Ref? 0 0.2 0.4 0.6 0.8 1 1.2 1.4
2 (@) 0 0.006 0.013 0.018 0.021 0.020 0.017  0.012
(b) 0 0.000 0.006 0.010 0.010 0.010 0.006 0.004
1.5 (a) 0 0.015 0.031 0.049 0.065 0.068 0.050  0.028
(b) 0 0.000 0.010 0.020 0.040 0.040 — —
1.25 (a) 0 0.023 0.049 0.087 0.139 0.167 0.1125 0.050
0

Table 6. Convergence of —K,/|KZ|; ellipsoid A=05and C=1

X
No. of

(2] elements® 0 0.5 0.75 1 2

0 (a) 1.5766  1.7293  2.0263  2.7366 3.5895

0 (b) 1.5758 1.7270  2.0193  2.7260 3.5894

0 (c) 1.5757 1.7268  2.0191  2.7257 3.5894
n/2 (a) 20003 3.0319 4.5102 6.1833  22.3643
n/2 (b) 1.9957 3.0046 4.4970 6.1112  22.3632
/2 (c) 1.9954 3.0041 44956 6.1022  22.3630

*Number of elements in hole: (a)— 128, (b)— 192, (c)—224.
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time of calculation varied from 400 to 500 CPU s. In table 7 we present results for C=1, A=0.5
and @ = n/2. The same results for & = 0 are shown in table 8. The same sets of results for C = 0.5
and A = 0.25 are shown in figures 9-11. In table 9 results are shown for C =0.5 and A = 0.25 for
the transverse and the coupled force. The transverse force is normalized by K = }[K% + K3). The
coupled force C,, is normalized by /|KZ-T3| to make it dimensionless. These results are
presented also in figures 12 and 13. One should note the similarity between these two graphs and
also their similarity to the transverse force on a sphere, figure 7. The same results but for @ =0
are given in table 10 and in figures 14 and 15. The dependence of the force on the distance from
the center is similar for ® = n/2 and @ = 0 but the magnitude in the last case is smaller, since in
the horizontal orientation the center of the body is closer to the wall than in the vertical orientation.
An interesting difference between the two orientations occurs in the sign of C,,. Ellipsoids with

Table 7. Ellipsoid C=1, A=0.5and @ ==/2
Z/A Force* 0 0.5 0.75 1 1.25 2 3 s

2 (a) 1.8522 19926 2.1493  2.3360 25194 2.8105 2.8496 2.8511
(b) 14314 14279 14250 - 2.4231 1.4240 1.4461 1.4636 1.4666
(c) 1.1636 1.1749  1.1832 1.1918 1.2036 1.2494 1.2617 1.2622
L5 (@) 1.9385 2.2892 27047  3.2615 3.9168 4.7665 4.8213 4.8223
(b) 1.5805 15913 1.6011 1.6127 1.6246 1.6852 1.7139 1.7167
©) 1.2319 1.2898 13270  1.3510 1.3809 1.5271 1.5499 1.5504
1.25 (@) 1.9757 26123 34156 4.5261 6.7045 8.7585 8.8242 8.8249
(b) 1.6898 1.7354 1.7757 1.8272 1.8680 1.9831 2.0200 2.0223
©) 1.2823 14325 1.5370  1.5792 1.6271 1.9466 1.9785 1.9790
1.1 (a) 1.9957 3.0046 44970  6.1112 16.0313  22.3632 224360  22.4362
(b) 1.7715  1.8722 19670  2.1096 2.2301 2.4264 2.4697 24721
©) 1.3201 1.6116 18724  1.9348 2.0051 2.6175 2.6572 2.6577

Ya) —K./IK3 1 b) =K /IKG; ©) — T,/ T

Table 8. Ellipsoid C=1, A=0.5 and & =0
X
zZ/C Force* 0 0.5 0.75 1 1.25 2 3 @

2 (@) 14311 14463 14624 1.4803 ~ 1.4965 1.5322 1.5309 1.5322
(b) 1.2582 1.2562 1.2545 1.2530 1.2525 1.2555 1.2595 1.2616
©) 1.0584 1.0583 1.0583  1.0584 1.0587 1.0598 1.0577 1.0602
1.5 (a) 1.5271  1.5855 1.6561  1.7391 1.8086 1.8845 1.8949 1.8956
(b) 1.3657 1.3640  1.3613  1.3591 1.3611 1.3782 1.3870 1.3895
©) 1.0759 1.0787 1.0809  1.0827 1.0851 1.0896 1.0902 1.0902
1.25 (a) 1.5634 1.6726 1.8373  2.0832 22872 2.4327 2.4440 2.4432
(b) 14540 14631 14691 1.4701 1.4814 1.5225 1.5345 1.5369
© 1.0921 1.1039 1.1161  1.1260 1.1343 1.1440 1.1445 1.1446
1.1 (@) 1.5758 17270  2.0193  2.7260  3.3463 3.5894 3.6007 3.5924
(b) 1.5220  1.5517 1.5885  1.6165 1.6508 1.7254 1.7394 1.7416
(c) 1.1043  1.1292 1.1672 12105 1.2362 1.2524 1.2529 1.2532

‘@) —K./IKZ | (0) —K /1K ©) —T,/IT;.

Ellipsoid - C=0.5 A=0.25; Ellipsoid - C=0.5, A=0.25;
horizontal orientation horizontal orientation
2.6 2.8
241 5 7/A=11 261 % Z/A=1 .1
2ol o 2/aet.25 // 241 . 2/A=1.25
2l w2/8=1 5 " 12T e /A5

-Kxx e I/A=2 B_'___,_.a -Tyy al ™ Z/A=2

1.6
1.4
1.2

o o® 05 07 1 1B L8 175 2 0 0% 05 07 { L& 15 175 2
DISTANCE FROM CENTER DISTANCE FROM CENTER

Figure 10. —K,,/|KZ |; ellipsoid 6 = x/2. Figure 11. —T,, /|7, |; ellipsoid € ==/2.
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Table 9. Ellipsoid C=0.5, A=0.25 and @ ==/2

X
Z/A Force® 0 0.5 0.75 1 1.25 2

2 (a) 0 0.1153 0.1727 0.1778 0.1138  0.00

(b) 0 0.0951 0.1698 0.1853 0.1063 0.00

1.5 (a) 0 0.1500 0.2755 0.3280 0.1996 0.00

(b) 0 0.1382 03393 0.4436 0.2382 0.00

1.25 (a) 0 0.1688 0.3780 0.5120 0.3063  0.00

(b) 0 01669 05531 0.8395 0.4340 0.00

1.1 (a) 0 0.1800 04919 0.7314 04509 0.00

(b) 0 01871 08242 14370 0.7574 0.00

(@) K./IK*|; (b) C../\/ K2 T K =4[K5 + K2}
Table 10. Ellipsoid C=0.5, A=0.25 and @ =0
X

Z|C Force* 0 0.5 0.75 1 1.25 2
2 (a) 0 0.0412 0.0525 0.0483 0.0323 0.00
(b) 0 00105 -0.0144 -0.0125 —0.0000 —0.00
1.5 (a) 0 0.0709 0.1066 0.1046 0.0553 0.00
(b) 0 ~—0.0144 —0.0288 —0.0297 —0.0096 —0.00
1.25 (a) 0 0.0872 0.1557 0.1830 0.0744 0.00
(b) 0 —00120 -0.0391 -—0.0573 -0.0108 —0.00
1.1 (a) 0 0.0948 0.1941 0.3163 0.0900 0.00
(b) 0 -0.0072 -0.0427 -0.1127 -0.0105 -—-0.00

a) K/ 1K™; (0) Co/\/1KZ - T K* =3[KZ + KZ).

Ellipsoid - C=0.5 A=0.25;

horizontal orientation

0.8
m7] x L/A=1.1
0.6 -o- 1/h=1.25
0.5 « L/A=1.5
Kxz 0.4 - L/h=2
0.3 4
0.2 /
NNy
Y
0 025 05 O 1 15 15 175 2

75
DISTANCE FROM CENTER

Figure 12. K,,/|K=|; ellipsoid @ =n/2, K* =K% + KZ].

0.4 ;

Kxz 0.2

Ellipsoid - C=0.5, A=0.25
vertical orientation

x 2/C=1.1

8- 2/C=1.25
-« 7/C=1.5

-+ Z/C=2

05 07 1
DISTANCE FROM

1.5
CENTER

1.5

.75

2

Figure 14. K_/|K™]; ellipsoid © =0, K* =3[K% + K31

Ellipsoid - C=0.5, A=0.2%
horizontal orientation

* Z/A=1.1

9- 1/A=1.25
- L/A=1.5

e L/AS2

0.75

DISTANCE FROM CENTER

Figure 13. C,./\/|Kg% - Ty |, ellipsoid @ = /2.

0.08
-Cyz0.06
0.04

0.02

Ellipsoid - C=0.5, A=0.25
vertical orientation

x* Z/C=1.1
p- 2/0=1.25
- 1/C=1.5

s Z/C=2

5075
DISTANCE

1.25
FROM CENTER

1.78 2

Figure 15. C,./\/|K% - T} |, ellipsoid & =0.
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Ellipsoid - C=0.5, A=0.25;
Ellipsoid - C=0.5. A=0.25 vertical orientation
horizental orientation

* Z/A=1.1 0.3
-o- 1/A=1.25

0.5

0.5+ % Z/C=1.1

e Z/A=i.5 e o5
0.18 e I/A2 0.2} e Z/C=1.
oL . ~ 2/C=1.5
- - X0.15
Cyx o4 ) \ Y . y e 2/C=2 e °
0.05 . ’ ) --------- 0.1
0 ‘ 0.05
R 05 07 1 4% 15 478 : O TTom es o 1 1m 15 1% 2
DISTANCE FROM CENTER DISTANCE FROM CENTER
Figure 16. —C,./\/|KZ - T}, |, ellipsoid & =n/2. Figure 17. C,./{/|K% - T5 |, ellipsoid € =0.

© =0, approaching the hole, will rotate clockwise in the direction of increasing &, whereas those
with @ = n/2 will rotate in the direction of decreasing ©. In tables 11 and 12 we present the same
results as in tables 9 and 10 but for C=1 and A =0.5. In table 13 the coupled force and torque
Co/\/ |1K3, Ty | is shown for C=1, A=0.5and C=0.5, A=0.25 for ® =0 and @ ==/2. The
sign of C,, is opposite to that of C,, and its magnitude is smaller. For @ =0, C,, is monotonically
increasing with the distance from the center but for & = /2 the behavior is quite complex and
at x = 1.25 it even changes sign. In the range 0 < x < 1, fluid, which is pushed down the hole, drags
the back side of the particle downwards, whereas fluid which is pushed along the wall drags the
front part of the particle upwards. Around x = 1.25, more fluid is pushed from the hole forward
than downward so that the sign of the torque changes. Finally, for x > 1.25, the influence of the
hole diminishes, only the influence of the infinite wall is felt and C,, is again negative. It is
interesting to note that in the case of a sphere C,, and C,, are both positive. Thus, far from the
hole, a sphere and an ellipsoid at @ = 0, moving in the positive direction of the X-axis, will rotate
in the direction of increasing ®@, whereas an ellipsoid at @ = n/2 will rotate in the direction of
decreasing ©.

Table 11. Ellipsoid C=1, A=0.5and ® =x/2

X
Z/4 Force* 0 0.5 0.75 1 1.25 2
2 (@) 0 00890 01133 0.1180 0.1030 0.0279
(b) 0 0.1104 0.1404 0.1431 0.1197 0.0222
1.5 (@ 0 0.1852 02427 02645 0.2326  0.0403
(b) 0 02720 03715 03951 03361 0.0353
1.25 (a) 0 02881 03846 0.4486 04189  0.0491
(b) 0 04808 0.7218 0.7839  0.7093  0.0456
1.1 (a) 0 04011 05488 0.6633 0.7695 0.0554
(®) 0 07423 1.2917 13700 1.3764  0.0537

@) K./|K®[; (b) C,.[V/1KZ - Tyl K* =HKZ + K2):

Table 12. Ellipsoid C=1, A=0.5and € =0

X

zZ/C Force* 0 0.5 0.75 1 1.25 2
2 (a) 0 0.0150 0.0188 0.0193 0.0171 0.000
(b) 0 —0.0063 -0.0077 -0.0074 -0.0060 —0.000
1.5 (a) 0 0.0493 0.0630 0.0614 0.0471 0.011
(b) 0 —0.0206 -—0.0265 -—0.0245 -0.0162 —0.000
1.25 (a) 0 0.0902 0.1293 0.1326 0.0884 0.013
(b) 0 —0.0342 -0.0531 -0.0542 -0.0297 -0.000
1.1 (a) 0 0.1251 0.2117 0.2633 0.1438 0.014
o (b) 0 —0.0338 -—0.0689 —0.0948 —-0.0396 —0.000

‘@) K. /IK®|; (b) C./3/IKZ - T5|. K= =3[K5+ K3).
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Table 13. C,,//|IKS - Tpy| for an ellipsoid. R =C for & =0; R =A for @ =n/2

X

Z/IR C,A0° 0 0.5 0.75 I 1.25 2 3 o6

2 (a) 0.0326 0.0320 0.0316 0.0314 0.0315 0.0334 0.0345 0.0346
(b) —0.0752  —0.0645 —0.0532 -0.0428 —0.0381 —0.0594 -0.0733 —0.0746
(c) 0.0222 0.0249 0.0264 0.0276 0.0300 0.0348 0.0348 0.0346
d) —0.0313 —0.0432 —-0.0401 -0.0224  —0.0248 -0.0719 —-0.0744  --0.0746

1.5 (a) 0.0600 0.0616 0.0625 0.0633 0.0658 0.0739 0.0755 0.0753
(b) -0.1129 —0.1000 -0.0768 —0.0508 —0.0352 —-0.0960  —0.1203 -0.1214
(c) 0.0289 0.0404 0.0520 0.0589 0.0681 0.0761 0.0755 0.0753
(d) -00314 —-00612 —-0.0716 —0.0285 —0.0241 -0.1191 —-0.1214  -0.1214

1.25 (a) 0.0834 0.0950 0.1054 0.1123 0.1213 0.1387 0.1398 0.1394
(b) —0.1396  —-0.1398 -0.1176  —0.0565 —0.0205 —0.1344  -0.1672 —-0.1682
() 0.0315 0.0516 0.0825 0.1088 0.1311 0.1407 0.1396 0.1394
(d) —0.0298 —0.0736 —0.1111  —0.0351 —0.0120 —0.1662  —0.1682  —0.1682

1.1 (a) 0.1002 0.1275 0.1648 0.2007 0.2275 0.2569 0.2573 0.2569
(b) 0.1582  —0.1858 —0.1429  —0.0525 0.0210 —0.1659  —0.2056  —0.2065
(©) 0.0321 0.0582 0.1134 0.1988 0.2485 0.2583 0.2570 0.2569
d) —0.0283 —0.0819 —0.1596 —0.0323 —0.0282 —0.2047 02066  —0.2065

@a)C=1,A=050=0,(b)C=1,A=05 6 =nr/2; (c) C=05, A=0.25 6 =0; (d) C=05 A=025 @ =n/2.
5. CONCLUSION

The boundary element method has been applied to a problem, to date treated by analytical or
mixed analytical-numerical methods for spherical bodies only. Results, obtained for these cases,
except for the transverse forces, are in good agreement with previous results, though no symmetry
assumptions were made. Large differences occurred in the transverse components of the force
which, we believe, are due to the method used in previous studies. New results are presented for
the first time for ellipsoids and are, in fact, available for any desired geometry of the body and
the hole. Moreover, though not applied here, the method can treat more than one hole without
requiring additional disc memory, since the order of the “body-hole” interaction matrix is
determined only by the number of elements on the body’s surface.
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APPENDIX

We prove now the continuity requirements {16}, [19] and [27] for the uniqueness of the solution.
Let Q, and Q, be domains in R? such that Q,NQ, = . Let X, be the boundary of Q, and X, the
boundary of Q,. Suppose that Z,nZ, # ¢ and that there exists a smooth surface Z,, Z;cZ,NZ,.
We define a domain Q, Q = Q,UQ,UZ,, with its boundary X, £ = X,UZ, /X, ; Q may be unbounded.

Proposition

Let (U, p) be a solution of the Dirichlet problem of Stokes equation in Q. Let (V',¢") be a
solution in Q, such that V'|;, z, = Uly, 5, and (V?, ¢°) a solution in Q, such that V?|; ;» = Ul 5 .
In case Q, or Q, are unbounded we assume that these solutions vanish in infinity. Then, for (V', q%)
and (V2 q?) to coincide with (U, p) in Q, and Q, it is sufficient that

V.! |z3 = V;? lz; [A.1]
and that
aij(Vl’ q')n,- |1:3 = aij(st qz)”j |23§ [A.2]
n; is the unit normal vector to the smooth surface Z, pointing either towards Q, or towards Q,.
Proof
Let D(f) be the energy dissipation function of the flow f, defined as
B (%, %\, 9
D(f =] 2+ )2+ 2 )dx .
2 2 fn <6x,- + ox; )\ 0x; + ox; dx [A.3]
D(f)=0 if either f =0 or if fis a rigid-body motion. Define the flow (¥, q) in Q as

Vi eQ
Vitx)= {sz xe,

V; is continuous across Z,. Since (¥,— U;) =0 on X, we get, by applying Gauss’ theorem:
DU -V) =I {U=V)loy(U-V'p—g")—o,(U—V%p—qg)indx [A4]
I
(n; is the normal pointing towards Q,). Consequently, [A.1] and [A.2] imply that D(U — V) =0.

Hence the difference U — ¥ may be only a rigid-body motion but, since it vanishes on the boundary
X, it must be zero.



